हिंदी

Find the area bounded by the curve y = |x – 1| and y = 1, using integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area bounded by the curve y = |x – 1| and y = 1, using integration.

योग

उत्तर


We have, y = (x – 1)

y = x – 1, if x – 1 ≥ 0

y = –x + 1, if x – 1 < 0

Required Area = Area of shaded region

A = `int_0^2 ydx`

= `int_0^1(1 - x)dx + int_1^2(x - 1)dx`

= `[x - x^2/2]_0^1 + [x^2/2 - x]_1^2`

= `(1 - 1/2) - (0 - 0/2) + (4/2 - 2) - (1/2 - 1)`

= `1/2 + 1/2`

= 1 sq.unit

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area of the region bounded by y = `sqrt(x)` and y = x.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×