Advertisements
Advertisements
प्रश्न
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
विकल्प
\[\frac{3}{32}\]
\[\frac{32}{3}\]
\[\frac{33}{2}\]
\[\frac{16}{3}\]
उत्तर

The points of intersection of the parabola and the y-axis are A(0, 2) and C(0, −2).
Therefore, the area of the required region ABCO,
\[A = \int_{- 2}^2 x d y\]
\[ = \int_{- 2}^2 \left( 4 - y^2 \right) d y\]
\[ = \left[ 4y - \frac{y^3}{3} \right]_{- 2}^2 \]
\[ = \left[ 4\left( 2 \right) - \frac{\left( 2 \right)^3}{3} \right] - \left[ 4\left( - 2 \right) - \frac{\left( - 2 \right)^3}{3} \right]\]
\[ = \left( 8 - \frac{8}{3} \right) - \left( - 8 + \frac{8}{3} \right)\]
\[ = 8 - \frac{8}{3} + 8 - \frac{8}{3}\]
\[ = 16 - \frac{16}{3}\]
\[ = \frac{32}{3}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the area bounded by the curve y2 = 4ax, x-axis and the lines x = 0 and x = a.
Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\] are in the ratio 2 : 3.
Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.
Find the area of the region bounded by x2 = 4ay and its latusrectum.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).
Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them.
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area of the region bounded by the circle x2 + y2 = 1 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.
Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.