हिंदी

The Area Bounded by the Parabola Y2 = 4ax, Latusrectum and X-axis is - Mathematics

Advertisements
Advertisements

प्रश्न

The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .

विकल्प

  • 0

  • \[\frac{4}{3} a^2\]

  • \[\frac{2}{3} a^2\]

  • \[\frac{a^2}{3}\]

MCQ

उत्तर

\[\frac{4}{3} a^2\]
 

Clearly, the latusrectum passes x-axis through the point D(a, 0).
Therefore, the required area ABCD,
\[A = \int_0^a y d x ...........\left(\text{Where, } y = 2\sqrt{ax} \right)\]
\[ = \int_0^1 2\sqrt{ax} d x\]
\[ = \left[ \frac{4\sqrt{a}}{3} \left( x \right)^\frac{3}{2} \right]_0^a \]
\[ = \left[ \frac{4\sqrt{a}}{3} \left( a \right)^\frac{3}{2} \right] - \left[ \frac{4\sqrt{a}}{3} \left( 0 \right)^\frac{3}{2} \right]\]
\[ = \frac{4}{3} a^2\text{ square units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - MCQ [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
MCQ | Q 13 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]  and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.

 

 


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Find the area of the region bounded by y = | x − 1 | and y = 1.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


The area bounded by the curve y = 4x − x2 and the x-axis is __________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Find the area of the curve y = sin x between 0 and π.


Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×