Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
उत्तर
Equations of the curves are given by x2 + y2 = 4x ......(i)
And y2 = 2x ......(ii)
⇒ x2 – 4x + y2 = 0
⇒ x2 – 4x + 4 – 4 + y2 = 0
⇒ (x – 2)2 + y2 = 4
Clearly it is the equation of a circle having its centre (2, 0) and radius 2.
Solving x2 + y2 = 4x and y2 = 2x
x2 + 2x = 4x
⇒ x2 + 2x – 4x = 0
⇒ x2 – 2x = 0
⇒ x(x – 2) = 0
∴ x = 0, 2
Area of the required region
= `2[int_0^2 sqrt(4 - (x - 2)^2) "d"x - int_0^2 sqrt(2x) "d"x]`
∴ Parabola and circle both are symmetrical about x-axis.
= `2[(x - 2)/2 sqrt(4 - (x - 2)^2) + 4/2 sin^-1 (x - 2)/2]_0^2 - 2*sqrt(2)* 2/3 [x^(3/2)]_0^2`
= `2[(0 + 0) - (0 + 2 sin^-1 (-1)] - (4sqrt(2))/3 [2^(3/2) - 0]`
= `-2 xx 2 * (- pi/2) - (4sqrt(2))/3 * 2sqrt(2)`
= `2pi - 16/3`
= `2(pi - 8/3)` sq.units
Hence, the required area = `2(pi - 8/3)` sq.units
APPEARS IN
संबंधित प्रश्न
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Using definite integrals, find the area of the circle x2 + y2 = a2.
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.
Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\] are in the ratio 2 : 3.
Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.
Find the area of the region included between the parabola y2 = x and the line x + y = 2.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.
Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.
Evaluate:
`int_0^1x^2dx`