हिंदी

Evaluate: ∫01x2dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int_0^1x^2dx`

योग

उत्तर

`int_0^1x^2dx = [x^3/3]_0^1`

= `1/3`

∴ Area of the shaded region = `2int_0^1x^2dx`

= `2/3` sq.units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (April) Specimen Paper

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×