Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
उत्तर
\[ x = \text{ a is a line parallel to } y -\text{ axis , and cutting x - axis at }(a, 0)\]
\[\text{ Making vertical strips of length } = \left| y \right|\text{ and width = dx in the quadrant OLSO . }\]
\[\text{ Area of approximating rectangle }= \left| y \right| dx\]
Since the approximating rectangle can move between x = 0 and x = a ,
\[\text{ and as the parabola is symmetric about } x -\text{ axis , }\]
\[\text{ Required shaded area OLSO }= A = 2 \times\text{ Area OLMO }\]
\[A = 2 \int_0^a \left| y \right| dx = 2 \int_0^a y dx ..............\left[ As, y > 0 \Rightarrow \left| y \right| = y \right]\]
\[ \Rightarrow A = 2 \int_0^a \sqrt{4ax} dx\]
\[ \Rightarrow A = 4 \int_0^a \sqrt{ax} dx\]
\[ \Rightarrow A = 4\sqrt{a} \int_0^a \sqrt{x} dx\]
\[ \Rightarrow A = 4\sqrt{a} \left[ \frac{x^\frac{3}{2}}{\frac{3}{2}} \right]_0^a \]
\[ \Rightarrow A = \frac{8}{3}\sqrt{a}\left[ a^\frac{3}{2} - 0 \right]\]
\[ \Rightarrow A = \frac{8}{3} a^2 \text{ sq . units }\]
APPEARS IN
संबंधित प्रश्न
Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.
Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.
Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]
Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Find the area of the region bounded by y = | x − 1 | and y = 1.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
Area bounded by parabola y2 = x and straight line 2y = x is _________ .
The area bounded by the curve y = 4x − x2 and the x-axis is __________ .
The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is
The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
Using integration, find the area of the region bounded by the parabola y2 = 4x and the circle 4x2 + 4y2 = 9.
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
Find the area of the region included between y2 = 9x and y = x
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0
The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.
Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.