हिंदी

Sketch the Region {(X, Y) : 9x2 + 4y2 = 36} and Find the Area of the Region Enclosed by It, Using Integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.

योग

उत्तर

We have, 

\[9 x^2 + 4 y^2 = 36 . . . . . \left( 1 \right)\]

\[ \Rightarrow 4 y^2 = 36 - 9 x^2 \]

\[ \Rightarrow y^2 = \frac{9}{4}\left( 4 - x^2 \right)\]

\[ \Rightarrow y = \frac{3}{2}\sqrt{\left( 4 - x^2 \right)} . . . . . \left( 2 \right)\]

\[\text{ From }\left( 1 \right)\text{ we get }\]

\[ \Rightarrow \frac{x^2}{4} + \frac{y^2}{9} = 1\]

\[\text{ Since in the given equation }\frac{x^2}{4} + \frac{y^2}{9} = 1,\text{ all the powers of both }  x\text{ and }y\text{ are even, the curve is symmetrical about both the axes }. \]

\[ \therefore\text{ Area enclosed by the curve and above }x\text{ axis }= 4 \times\text{ area enclosed by ellipse and }x - \text{ axis in first quadrant }\]

\[(2, 0 ), ( - 2, 0)\text{ are the points of intersection of curve and }x -\text{ axis }\]

\[(0, 3), (0, - 3) \text{ are the points of intersection of curve and } y -\text{ axis }\]

\[\text{ Slicing the area in the first quadrant into vertical stripes of height }= \left| y \right| \text{ and width }= dx\]

\[ \therefore\text{ Area of approximating rectangle }= \left| y \right| dx\]

\[\text{ Approximating rectangle can move between }x = 0 \text{ and }x = 2\]

\[A =\text{  Area of enclosed curve }= 4 \int_0^2 \left| y \right| dx\]

\[ \Rightarrow A = 4 \int_0^2 \frac{3}{2}\sqrt{4 - x^2} d x ................\left[ \text{ From }\left( 2 \right) \right]\]

\[ = 4 \times \frac{3}{2} \int_0^2 \sqrt{4 - x^2} d x\]

\[ = 6 \int_0^2 \sqrt{2^2 - x^2} d x\]

\[ = 6 \left[ \frac{x}{2}\sqrt{2^2 - x^2} + \frac{1}{2} 2^2 \sin^{- 1} \frac{x}{2} \right]_0^2 \]

\[ = 6\left\{ 0 + \frac{1}{2}4 \sin^{- 1} 1 \right\}\]

\[ = 6\left\{ \frac{1}{2} \times 4\left( \frac{\pi}{2} \right) \right\}\]

\[ \Rightarrow A = 6\pi\text{ sq units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.1 | Q 11 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m. 

 


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area of the region included between y2 = 9x and y = x


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area of the region bounded by y = `sqrt(x)` and y = x.


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


Find the area bounded by the curve y = |x – 1| and y = 1, using integration.


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.


Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×