हिंदी

Using Integration Find the Area of the Region Bounded by the Curves Y = √ 4 − X 2 , X 2 + Y 2 − 4 X = 0 and the X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.

योग

उत्तर

The given curves are \[y = \sqrt{4 - x^2}\] and \[x^2 + y^2 - 4x = 0\] \[y = \sqrt{4 - x^2} \Rightarrow x^2 + y^2 = 4\]................(1)
This represents a circle with centre O(0, 0) and radius = 2 units.
Also,
\[x^2 + y^2 - 4x = 0 \Rightarrow \left( x - 2 \right)^2 + y^2 = 4\]...............(2)
This represents a circle with centre B(2, 0) and radius = 2 units.
Solving (1) and (2), we get 
\[\left( x - 2 \right)^2 = x^2 \]
\[ \Rightarrow x^2 - 4x + 4 = x^2 \]
\[ \Rightarrow x = 1 \]
\[ \therefore y^2 = 3 \Rightarrow y = \pm \sqrt{3}\]
Thus, the given circles intersect at \[A\left( 1, \sqrt{3} \right)\] and \[C\left( 1, - \sqrt{3} \right)\]

∴ Required area
= Area of the shaded region OABO
\[= \int_0^1 \sqrt{4 - \left( x - 2 \right)^2} dx + \int_1^2 \sqrt{4 - x^2} dx\]
\[ = \left[ \frac{1}{2}\left( x - 2 \right)\sqrt{4 - \left( x - 2 \right)^2} + \frac{4}{2} \sin^{- 1} \left( \frac{x - 2}{2} \right) \right]_0^1 \]
\[ + \left[ \frac{1}{2}x\sqrt{4 - x^2} + \frac{4}{2} \sin^{- 1} \left( \frac{x}{2} \right) \right]_1^2 \]
\[ = \left[ - \frac{\sqrt{3}}{2} + 2 \sin^{- 1} \left( - \frac{1}{2} \right) \right] - \left[ 0 + 2 \sin^{- 1} \left( - 1 \right) \right]\]
\[ + \left( 0 - \frac{1}{2}\sqrt{3} \right) + 2\left[ \sin^{- 1} \left( 1 \right) - \sin^{- 1} \left( \frac{1}{2} \right) \right]\]
\[= - \frac{\sqrt{3}}{2} - 2 \times \frac{\pi}{6} + 2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2} + 2 \times \frac{\pi}{2} - 2 \times \frac{\pi}{6}\]
\[ = - \sqrt{3} + 2\pi - \frac{2\pi}{3}\]
\[ = \left( \frac{4\pi}{3} - \sqrt{3} \right)\text{ square units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.3 | Q 45 | पृष्ठ ५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Find the area of the region bounded by x2 = 4ay and its latusrectum.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×