मराठी

Using Integration Find the Area of the Region Bounded by the Curves Y = √ 4 − X 2 , X 2 + Y 2 − 4 X = 0 and the X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.

बेरीज

उत्तर

The given curves are \[y = \sqrt{4 - x^2}\] and \[x^2 + y^2 - 4x = 0\] \[y = \sqrt{4 - x^2} \Rightarrow x^2 + y^2 = 4\]................(1)
This represents a circle with centre O(0, 0) and radius = 2 units.
Also,
\[x^2 + y^2 - 4x = 0 \Rightarrow \left( x - 2 \right)^2 + y^2 = 4\]...............(2)
This represents a circle with centre B(2, 0) and radius = 2 units.
Solving (1) and (2), we get 
\[\left( x - 2 \right)^2 = x^2 \]
\[ \Rightarrow x^2 - 4x + 4 = x^2 \]
\[ \Rightarrow x = 1 \]
\[ \therefore y^2 = 3 \Rightarrow y = \pm \sqrt{3}\]
Thus, the given circles intersect at \[A\left( 1, \sqrt{3} \right)\] and \[C\left( 1, - \sqrt{3} \right)\]

∴ Required area
= Area of the shaded region OABO
\[= \int_0^1 \sqrt{4 - \left( x - 2 \right)^2} dx + \int_1^2 \sqrt{4 - x^2} dx\]
\[ = \left[ \frac{1}{2}\left( x - 2 \right)\sqrt{4 - \left( x - 2 \right)^2} + \frac{4}{2} \sin^{- 1} \left( \frac{x - 2}{2} \right) \right]_0^1 \]
\[ + \left[ \frac{1}{2}x\sqrt{4 - x^2} + \frac{4}{2} \sin^{- 1} \left( \frac{x}{2} \right) \right]_1^2 \]
\[ = \left[ - \frac{\sqrt{3}}{2} + 2 \sin^{- 1} \left( - \frac{1}{2} \right) \right] - \left[ 0 + 2 \sin^{- 1} \left( - 1 \right) \right]\]
\[ + \left( 0 - \frac{1}{2}\sqrt{3} \right) + 2\left[ \sin^{- 1} \left( 1 \right) - \sin^{- 1} \left( \frac{1}{2} \right) \right]\]
\[= - \frac{\sqrt{3}}{2} - 2 \times \frac{\pi}{6} + 2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2} + 2 \times \frac{\pi}{2} - 2 \times \frac{\pi}{6}\]
\[ = - \sqrt{3} + 2\pi - \frac{2\pi}{3}\]
\[ = \left( \frac{4\pi}{3} - \sqrt{3} \right)\text{ square units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 45 | पृष्ठ ५३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of the region included between y2 = 9x and y = x


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Find the area of the region bounded by y = `sqrt(x)` and y = x.


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×