मराठी

Find the Area Bounded by the Parabola Y = 2 − X2 and the Straight Line Y + X = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.

उत्तर

The graph of the parabola \[y = 2 - x^2\] and the line \[x + y = 0\] can be given as: 

To find the points of intersection between the parabola and the line let us substitute \[x = - y\]  in \[y = 2 - x^2\]
\[y = 2 - y^2 \]
\[ \Rightarrow y^2 + y - 2 = 0\]
\[ \Rightarrow \left( y - 1 \right)\left( y + 2 \right) = 0\]
\[ \Rightarrow y = 1, - 2\]"
\[\Rightarrow x = - 1, 2\]
Therefore, the points of intersection are \[A( - 1, 1)\] and \[C\left( 2, - 2 \right)\] 
The area of the required region ABCD = \[\int_{- 1}^2 y_1 d x - \int_{- 1}^2 y_2 d x\] where \[y_1 = 2 - x^2\] and \[y_2 = - x\]
Required Area 
\[= \int_{- 1}^2 \left( 2 - x^2 + x \right) d x\]
\[ = \left[ 2x - \frac{x^3}{3} + \frac{x^2}{2} \right]_{- 1}^2 \]
\[ = \left[ \left\{ 2\left( 2 \right) - \frac{\left( 2 \right)^3}{3} + \frac{\left( 2 \right)^2}{2} \right\} - \left\{ 2\left( - 1 \right) - \frac{\left( - 1 \right)^3}{3} + \frac{\left( - 1 \right)^2}{2} \right\} \right]\]

After simplifying we get, \[= \frac{9}{2}\]  square units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 29 | पृष्ठ ५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×