मराठी

The area enclosed by the ellipse abx2a2+y2b2 = 1 is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.

पर्याय

  • π2ab

  • πab

  • πa2b

  • πab2

MCQ
रिकाम्या जागा भरा

उत्तर

The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to πab.

Explanation:

Since Area = `4 int_0^"a"  "b"/"a" sqrt("a"^2 - x^2)  "d"x`

= `(4"b")/"a"[x/2 sqrt("a"^2 - x^2) + "a"^2/2 + "a"^2/2 sin^-1  x/"a"]_0^"a"`

= πab.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application Of Integrals - Solved Examples [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 8 Application Of Integrals
Solved Examples | Q 11 | पृष्ठ १७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×