मराठी

Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).

बेरीज

उत्तर

y2 ≤ 2x

y ≥ x – 4

y2 = 2x  ...(i)

y – x + 4 = 0 or x – y = 4  ...(ii)

Put the value of x from (ii) in (i), we have

y2 = 2(y + 4)

y2 – 2y – 8 = 0

`\implies` y = 4, – 2


When y = 4, x = 4 + 4 = 8

When y = – 2, x = 4 – 2 = 2

Required area = `int_-2^4 (y + 4) dy - int_-2^4 y^2/2 dy`

= `[(y + 4)^2/2]_-2^4 - 1/2[y^3/3]_-2^4` 

= `1/2 [64 - 4] - 1/6[64 + 8]`

= 30 – 12

= 18 sq. units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×