Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the curves y2 = 9x, y = 3x
उत्तर
We have, y2 = 9x, y = 3x
Solving the two equations,
We have (3x)2 = 9x
⇒ 9x2 – 9x = 0
⇒ 9x(x – 1) = 0
∴ x = 0, 1
Area of the shaded region
= ar (region OAB) – ar (ΔOAB)
= `- int_0^1 y_1 * "d"x`
= `int_0^1 sqrt(9x) "d"x - int_0^1 3x "d"x`
= `3 int_0^1 sqrt(x) "d"x - 3 int_0^1 x "d"x`
= `3 xx 2/3 [x^(3/2)]_0^1 - 3[x^2/2]_0^1`
= `2[(1)^(3/2) - 0] - 3/2 [(1)^2 - 0]`
= `2(1) - 3/2 (1)`
= `2 - 3/2`
= `1/2` sq.units
Hence, the required area = `1/2` sq.units
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.
[Hint: y = x2 if x > 0 and y = –x2 if x < 0]
Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Find the area of the region bounded by x2 = 4ay and its latusrectum.
Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.
Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.
Find the area of the region included between the parabola y2 = x and the line x + y = 2.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0
Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.
Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.