मराठी

Find the Area of the Region Bounded by the Parabola Y2 = 2x + 1 and the Line X − Y − 1 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.

बेरीज

उत्तर

We have,
\[y^2 = 2x + 1\] and \[x - y - 1 = 0\]
To find the intersecting points of the curves ,we solve both the equations.
\[y^2 = 2\left( 1 + y \right) + 1\]
\[ \Rightarrow y^2 - 2 - 2y - 1 = 0\]
\[ \Rightarrow y^2 - 2y - 3 = 0\]
\[ \Rightarrow \left( y - 3 \right)\left( y + 1 \right) = 0\]
\[ \Rightarrow y = 3\text{ or }y = - 1\]
\[ \therefore x = 4\text{ or }0\]
\[\text{ Consider a horizantal strip of length }\left| x_2 - x_1 \right|\text{ and width dy where }P\left( x_2 , y \right)\text{ lies on straight line and Q }\left( x_1 , y \right)\text{ lies on the parabola . }\]
\[\text{ Area of approximating rectangle }= \left| x_2 - x_1 \right| dy , \text{ and it moves from }y = - 1\text{ to }y = 3\]
\[\text{ Required area = area }\left( OADO \right) = \int_{- 1}^3 \left| x_2 - x_1 \right| dy\]
\[ = \int_{- 1}^3 \left| x_2 - x_1 \right| dy ...........\left\{ \because \left| x_2 - x_1 \right| = x_2 - x_1 as x_2 > x_1 \right\}\]
\[ = \int_{- 1}^3 \left\{ \left( 1 + y \right) - \frac{1}{2}\left( y^2 - 1 \right) \right\}dy\]
\[ = \int_{- 1}^3 \left\{ 1 + y - \frac{1}{2} y^2 + \frac{1}{2} \right\}dy\]
\[ = \int_{- 1}^3 \left\{ \frac{3}{2} + y - \frac{1}{2} y^2 \right\}dy\]
\[ = \left[ \frac{3}{2}y + \frac{y^2}{2} - \frac{1}{6} y^3 \right]_{- 1}^3 \]
\[ = \left[ \frac{9}{2} + \frac{9}{2} - \frac{27}{6} \right] - \left[ \frac{- 3}{2} + \frac{1}{2} + \frac{1}{6} \right]\]
\[ = \left[ \frac{9}{2} \right] + \left[ \frac{5}{6} \right]\]
\[ = \frac{16}{3}\text{ sq units }\]
\[\text{ Area enclosed by the line and given parabola }= \frac{16}{3}\text{ sq units }\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 26 | पृष्ठ ५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


The curve x = t2 + t + 1,y = t2 – t + 1 represents


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×