मराठी

Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.

पर्याय

  • −9

  • `(-15)/4`

  • `15/4`

  • `17/4`

MCQ
रिकाम्या जागा भरा

उत्तर

Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is `underline(17/4)`.

Explanation:

The required area is the shaded region, as shown in the graph.

∴ Required area `= |int_-2^0 x^3 dx| + int_0^1  x^3  dx`

`= |[x^4/4]|_-2^0 + [x^4/4]_0^1`

`= |(0 - 16/4)| + (1/4 - 0)`

`= 16/4 + 1/4`

`= 17/4` square units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - MCQ [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
MCQ | Q 26 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]  and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.

 

 


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.


Find the area of the region bounded by y = | x − 1 | and y = 1.


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


The area of the region bounded by the curve y = x2 and the line y = 16 ______.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×