Advertisements
Advertisements
प्रश्न
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
पर्याय
(x − 1) cos (3x + 4)
sin (3x + 4)
sin (3x + 4) + 3 (x − 1) cos (3x +4)
none of these
उत्तर
sin (3x + 4) + 3 (x − 1) cos (3x +4)
\[y = f\left( x \right)\]
If A is the the area bound by the curve , x - axis , x = 1 and x = b
\[ \Rightarrow \int_1^b f\left( x \right) dx = \left[ A \right]_1^b = \left( b - 1 \right)\sin \left( 3b + 4 \right) .............\left\{\text{Given }\right\}\]
\[ \Rightarrow f\left( x \right) = \frac{d}{dx}\left( \left( x - 1 \right)\sin\left( 3x + 4 \right) \right)\]
\[ = \sin\left( 3x + 4 \right)\frac{d}{dx}\left( x - 1 \right) + \left( x - 1 \right)\frac{d}{dx}\sin\left( 3x + 4 \right)\]
\[ = \sin\left( 3x + 4 \right) + 3\left( x - 1 \right)\cos\left( 3x + 4 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.
Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
The area bounded by the curve y = 4x − x2 and the x-axis is __________ .
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
The area enclosed by the circle x2 + y2 = 2 is equal to ______.
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Find the area of region bounded by the line x = 2 and the parabola y2 = 8x
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`
Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =
The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.