मराठी

Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.

बेरीज

उत्तर

Solving x + y = 2 and y2 = x simultaneously, we get the points of intersection as (1, 1) and (4, –2).

The required area = the shaded area = `int_0^1 sqrt(x) dx + int_1^2 (2 - x) dx`

= `2/3 [x^(3/2)]_0^1 + [2x - x^2/2]_1^2`

= `2/3 + 1/2 = 7/6` suqare units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Term 2 Sample

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Find the area of the curve y = sin x between 0 and π.


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area of the region bounded by y = `sqrt(x)` and y = x.


Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×