हिंदी

Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.

योग

उत्तर

Solving x + y = 2 and y2 = x simultaneously, we get the points of intersection as (1, 1) and (4, –2).

The required area = the shaded area = `int_0^1 sqrt(x) dx + int_1^2 (2 - x) dx`

= `2/3 [x^(3/2)]_0^1 + [2x - x^2/2]_1^2`

= `2/3 + 1/2 = 7/6` suqare units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 Sample

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×