Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.
उत्तर
The curve \[x = a t^2 , y = 2\text{ at }\] represents the parametric equation of the parabola.
Eliminating the parameter t, we get \[y^2 = 4ax\]
This represents the Cartesian equation of the parabola opening towards the positive x-axis with focus at (a, 0).
When t = 1, x = a
When t = 2, x = 4a
∴ Required area = Area of the shaded region
= 2 × Area of the region ABCFA
\[= 2 \int_a^{4a} y_{\text{ parabola }} dx\]
\[ = 2 \int_a^{4a} \sqrt{4ax}dx\]
\[ = \left.2 \times {2\sqrt{a} \times \frac{x^\frac{3}{2}}{\frac{3}{2}}}\right|_a^{4a} \]
\[ = \frac{8\sqrt{a}}{3}\left[ \left( 4a \right)^\frac{3}{2} - a^\frac{3}{2} \right]\]
\[ = \frac{8\sqrt{a}}{3}\left( 8a\sqrt{a} - a\sqrt{a} \right)\]
\[ = \frac{8\sqrt{a}}{3} \times 7a\sqrt{a}\]
\[ = \frac{56}{3} a^2\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4
Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.
Find the area of the region included between the parabola y2 = x and the line x + y = 2.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Find the area of the region bounded by y = | x − 1 | and y = 1.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .
Using integration, find the area of the region bounded by the parabola y2 = 4x and the circle 4x2 + 4y2 = 9.
Find the area of the curve y = sin x between 0 and π.
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.