हिंदी

Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7. - Mathematics

Advertisements
Advertisements

प्रश्न

Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.

योग

उत्तर


Given that: x + 2y = 2  .....(i)

y – x = 1   ......(ii)

And 2x + y = 7   ......(iii)

x 0 2
y 1 0

 

x 0 –1
y 1 0

 

x 0 `7/2`
y 7 0

Solving equations (ii) and (iii)

We get y = 1 + x

∴ 2x + 1 + x = 7

3x = 6

⇒ x = 2

∴ y = 1 + 2

= 3

Coordinates of B = (2, 3)

Solving equations (i) and (iii)

We get x + 2y = 2

∴ x = 2 – 2y

2x + y = 7

2(2 – 2y) + y = 7

⇒ 4 – 4y + y = 7

⇒ –3y = 3

∴ y = –1 and x = 4

∴ Coordinates of C = (4, – 1) and coordinates of A = (0, 1).

Taking the limits on y-axis, we get

`int_(-1)^3 x_"BC" "d"y - int_(-1)^1  x_"AC" "d"y - int_1^3  x_"AB" "d"y`

= `int_(-1)^3 (7 - y)/2  "d"y - int_(-1)^1 (2 - 2y)  "d"y - int_1^3 (y - 1) "d"y`

= `1/2 [7y - y^2/2]_-1^2 - 2[y - y^2/2]_-1^1 - [y^2/2 - y]_1^3`

= `1/2[(21 - 9/2) - (7 - 1/2)] - 2[(1 - 1/2) - (-1 - 1/2)] - [(9/2 - 3) - (1/2 - 1)]`

= `1/2[33/2 + 15/2] - 2[1/2 + 3/2] - [3/2 + 1/2]`

= `1/2 xx 24 - 2 xx 2 - 2`

⇒ 12 – 4 – 2 = 6 sq.units

Hence, the required area = 6 sq.units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application Of Integrals - Exercise [पृष्ठ १७७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 8 Application Of Integrals
Exercise | Q 20 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]  and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.

 

 


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


The curve x = t2 + t + 1,y = t2 – t + 1 represents


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×