हिंदी

Find the Area of the Region Bounded by the Curve Xy − 3x − 2y − 10 = 0, X-axis and the Lines X = 3, X = 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.

उत्तर

We have, 
\[xy - 3x - 2y - 10 = 0\]
\[ \Rightarrow xy - 2y = 3x + 10\]
\[ \Rightarrow y\left( x - 2 \right) = 3x + 10\]
\[ \Rightarrow y = \frac{3x + 10}{x - 2}\]
Let A represent the required area:
\[\Rightarrow A = \int_3^4 \left| y \right| d x\]
\[ = \int_3^4 \frac{3x + 10}{x - 2} d x\]
\[ = \int_3^4 \frac{3x - 6 + 16}{x - 2} d x\]
\[ = \int_3^4 \left( 3 + \frac{16}{x - 2} \right) d x\]
\[ = \left[ 3x + 16 \log \left| x - 2 \right| \right]_3^4 \]
\[ = \left[ 12 + 16 \log \left| 2 \right| - 9 - 16 \log \left| 1 \right| \right]\]
\[ = 3 + 16 \log 2\text{ sq . units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.1 | Q 20 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


The curve x = t2 + t + 1,y = t2 – t + 1 represents


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×