हिंदी

Find the Area Enclosed by the Curves 3x2 + 5y = 32 and Y = | X − 2 |. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.

योग

उत्तर


\[3 x^2 + 5y = 32\]  represents a downward opening parabola, symmetrical about negative x-axis
\[\text{ vertex of the parabola is D }\left( 0, \frac{32}{5} \right) . \text{ It cuts the X axis at B }\left( \sqrt{\frac{32}{3}} , 0 \right) \text{ and B' }\left( - \sqrt{\frac{32}{3}} , 0 \right)\]
Also, 
\[y = \left| x - 2 \right| \]
\[ \Rightarrow y = \begin{cases}x - 2 ,& x \geq 2\\2 - x ,& x < 2\end{cases}\]
\[ y = x - 2 , x \geq 2\text{ represents a line , cutting the }x \text{ axis at A } \left( 2, 0 \right)\text{ and the parabola at C }\left( 3, 1 \right)\]
\[\text{ And }y = 2 - x, x < 2\text{ represents a line, cutting the parabola at }\left( - 2, 4 \right)\]
Shaded area AEYCA
\[ = \int_{- 2}^2 \left[ \left( \frac{32 - 3 x^2}{5} \right) - \left( 2 - x \right) \right]dx + \int_2^3 \left[ \left( \frac{32 - 3 x^2}{5} \right) - \left( x - 2 \right) \right]dx \]
\[ = \int_{- 2}^3 \left( \frac{32 - 3 x^2}{5} \right)dx - \left[ \int_{- 2}^2 \left( 2 - x \right)dx + \int_2^3 \left( x - 2 \right)dx \right]\]
\[ = \frac{1}{5} \left[ 32x - x^3 \right]_{- 2}^3 - \left[ 2x - \frac{x^2}{2} \right]_{- 2}^2 - \left[ \frac{x^2}{2} - 2x \right]_2^3 \]
\[ = \frac{1}{5}\left[ 32 \times 3 - 27 + 64 - 8 \right] - \left( 4 - 2 + 4 + 2 \right) - \left( \frac{9}{2} - 6 - 2 + 4 \right)\]
\[ = \frac{1}{5}\left[ 96 - 35 + 64 \right] - \left( 8 \right) - \left( \frac{9}{2} - 4 \right)\]
\[ = \frac{125}{5} - 4 - \frac{9}{2}\]
\[ = 25 - 4 - \frac{9}{2}\]
\[ = 21 - \frac{9}{2}\]
\[ = \frac{42 - 9}{2}\]
\[ = \frac{33}{2}\text{ sq units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.3 | Q 47 | पृष्ठ ५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area of the region bounded by y = | x − 1 | and y = 1.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.


Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×