हिंदी

Find the Area of the Region Enclosed by the Parabola X2 = Y and the Line Y = X + 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.

योग

उत्तर

 The points of intersection C and D are obtained by solving the two equations
\[\therefore x^2 = x + 2\]
\[ \Rightarrow x^2 - x - 2 = 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x + 1 \right) = 0\]
\[ \Rightarrow x = 2\text{ or }x = - 1\]
\[ \Rightarrow y = 2^2 = 4\text{ or }y = \left( - 1 \right)^2 = 1\]
\[\text{ Thus }C(\left( 2, 4 \right)\text{ and }D\left( - 1, 1 \right) \text{ are the points of intesection of two curves }\]
\[\text{ Consider a vertical steip of length }\left| y_2 - y_1 \right| \text{ and width dx where }P\left( x, y_2 \right)\text{ lies on straight line and }Q\left( x, y_1 \right)\text{ lies on the parabola }. \]
\[\text{ Area of approximating rectangle }= \left| y_2 - y_1 \right| dx ,\text{ and it moves from }x = - 1\text{ to }x = 2\]
\[\text{ Required area = area }\left( ODBCO \right) = \int_{- 1}^2 \left| y_2 - y_1 \right| dx\]
\[ = \int_{- 1}^2 \left( y_2 - y_1 \right) dx .............\left\{ \because \left| y_2 - y_1 \right| = y_2 - y_1 as y_2 > y_1 \right\}\]
\[ = \int_{- 1}^2 \left( \left( x + 2 \right) - x^2 \right) dx\]
\[ = \int_{- 1}^2 \left( x + 2 - x^2 \right) dx\]
\[ = \left[ \frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{- 1}^2 \]
\[ = \frac{4}{2} + 4 - \frac{8}{3} - \frac{1}{2} + 2 - \frac{1}{3}\]
\[ = \frac{9}{2}\text{ sq units }\]
\[\text{ Area enclosed by the line and given parabola }= \frac{9}{2}\text{ sq units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.3 | Q 38 | पृष्ठ ५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area of the region bounded by y = | x − 1 | and y = 1.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×