Advertisements
Advertisements
प्रश्न
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
उत्तर
\[R = \left\{ \left( x, y \right): 0 \leq y \leq x^2 + 3 , 0 \leq y \leq 2x + 3 , 0 \leq x \leq 3 \right\}\]
\[ R_1 = \left\{ \left( x, y \right) : 0 \leq y \leq x^2 + 3 \right\}\]
\[ R_2 = \left\{ \left( x, y \right) : 0 \leq y \leq 2x + 3 \right\}\]
\[ R_3 = \left\{ \left( x, y \right) : 0 \leq x \leq 3 \right\}\]
\[ \Rightarrow R = R_1 \cap R_2 \cap R_3 \]
y = x2 + 3 is a upward opening parabola with vertex A(0, 3).
Thus R1 is the region above x-axis and below the parabola
y = 2x + 3 is a straight line passing through A(0, 3) and cuts y-axis on (−3/2, 0).
Hence R2 is the region above x-axis and below the line
x = 3 is a straight line parallel to y-axis, cutting x-axis at E(3, 0).
Hence R3 is the region above x-axis and to the left of the line x = 3.
Point of intersection of the parabola and y = 2x + 3 is given by solving the two equations
\[y = x^2 + 3\]
\[y = 2x + 3\]
\[ \Rightarrow x^2 + 3 = 2x + 3\]
\[ \Rightarrow x^2 - 2x = 0\]
\[ \Rightarrow x\left( x - 2 \right) = 0\]
\[ \Rightarrow x = 0 \text{ or }x = 2\]
\[ \Rightarrow y = 3\text{ or }y = 7\]
\[ \Rightarrow A\left( 0, 3 \right)\text{ and }B\left( 2, 7 \right) \text{ are points of intersection }\]
\[\text{ Also }, x = 3\text{ cuts the parabola at }C\left( 3, 12 \right)\]
\[\text{ and }x = 3\text{ cuts }y = 2x + 3\text{ at }D\left( 3, 9 \right)\]
We require thearea of shaded region.
\[\text{ Total shaded area }= \int_0^2 \left( x^2 + 3 \right)dx + \int_2^3 \left( 2x + 3 \right)dx\]
\[ = \left[ \frac{x^3}{3} + 3x \right]_0^2 + \left[ \frac{2 x^2}{2} + 3x \right]_2^3 \]
\[ = \left[ \frac{x^3}{3} + 3x \right]_0^2 + \left[ x^2 + 3x \right]_2^3 \]
\[ = \left[ \frac{8}{3} + 6 \right] + \left[ 9 + 9 - 4 - 6 \right]\]
\[ = \frac{8}{3} + 6 + 8\]
\[ = \frac{8 + 42}{3}\]
\[ = \frac{50}{3}\text{ sq . units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.
Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.
Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Find the area bounded by the curves x = y2 and x = 3 − 2y2.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
The area bounded by the curve y = 4x − x2 and the x-axis is __________ .
Using integration, find the area of the region bounded by the parabola y2 = 4x and the circle 4x2 + 4y2 = 9.
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Find the area of the curve y = sin x between 0 and π.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.
The area of the region bounded by the line y = 4 and the curve y = x2 is ______.
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.
Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.
Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.