Advertisements
Advertisements
प्रश्न
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
उत्तर
To find the point of intersection of the parabola x = 4y − y2 and the line x = 2y − 3
Let us substitute x = 2y − 3 in the equation of the parabola.
\[2y - 3 = 4y - y^2 \]
\[ \Rightarrow y^2 - 2y - 3 = 0\]
\[ \Rightarrow \left( y + 1 \right)\left( y - 3 \right)\]
\[ \Rightarrow y = - 1, 3\]
Therefore, the points of intersection are D(−1, −5) and A(3, 3).
The area of the required region ABCDOA,
\[A = \int_{- 1}^3 \left| x_1 - x_2 \right| dy.......\text{ where, }x_1 = 4y - y^2\text{ and }x_2 = 2y - 3\]
\[ = \int_{- 1}^3 \left( x_1 - x_2 \right) dy .........\left( \because x_1 > x_2 \right)\]
\[ = \int_{- 1}^3 \left[ \left( 4y - y^2 \right) - \left( 2y - 3 \right) \right] d y\]
\[ = \int_{- 1}^3 \left( 4y - y^2 - 2y + 3 \right) d y\]
\[ = \int_{- 1}^3 \left( - y^2 + 2y + 3 \right) d y\]
\[ = \left[ - \frac{y^3}{3} + \frac{2 y^2}{2} + 3y \right]_{- 1}^3 \]
\[ = \left[ - \frac{y^3}{3} + y^2 + 3y \right]_{- 1}^3 \]
\[ = - \frac{3^3}{3} + 3^2 + 9 - \left( \frac{1}{3} + 1 - 3 \right)\]
\[ = - 3^2 + 3^2 + 9 - \frac{1}{3} - 1 + 3\]
\[ = 11 - \frac{1}{3}\]
\[ = \frac{32}{3}\text{ sq . units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Find the area bounded by the curves x = y2 and x = 3 − 2y2.
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is
Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
The curve x = t2 + t + 1,y = t2 – t + 1 represents
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
Evaluate:
`int_0^1x^2dx`