Advertisements
Advertisements
प्रश्न
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
उत्तर
We have,
\[x^2 + y^2 = 32\] and \[y = x\]
The point of intersection of the circle and parabola is obtained by solving the two equations
\[\therefore x^2 + x^2 = 32\]
\[ \Rightarrow 2 x^2 = 32 \]
\[ \Rightarrow x^2 = 16 \]
\[ \Rightarrow x = \pm 4 \]
\[ \therefore y = \pm 4 \]
\[\text{ Thus C }\left( 4, 4 \right)\text{ and C' }\left( - 4, - 4 \right)\text{ are points of intersection of the circle and straight line .} \]
\[\text{ Required shaded area }\left( OCAPO \right) =\text{ area }\left( OCPO \right) +\text{ area }\left( PCAP \right)\]
\[ = \int_0^4 \left| y_1 \right|dx + \int_4^\sqrt{32} \left| y_2 \right|dx\]
\[ = \int_0^4 y_1 dx + \int_4^\sqrt{32} y_2 dx ...............\left\{ \because y_1 > 0 \Rightarrow \left| y_1 \right| = y_1\text{ and }y_2 > 0 \Rightarrow \left| y_2 \right| = y_2 \right\}\]
\[ = \int_0^4 x dx + \int_4^\sqrt{32} \sqrt{32 - x^2} dx \]
\[ = \left[ \frac{x^2}{2} \right]_0^4 + \left[ \frac{1}{2}x\sqrt{32 - x^2} + \frac{1}{2} \times 32 \sin^{- 1} \left( \frac{x}{\sqrt{32}} \right) \right]_4^\sqrt{32} \]
\[ = 8 + 8\pi - 8 - 4\pi\]
\[ = 4\pi\text{ sq units . }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Find the area lying above the x-axis and under the parabola y = 4x − x2.
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
Find the area of the region bounded by the curves y2 = 9x, y = 3x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.
The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.
Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.
Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.