मराठी

Find the Area of the Region in the First Quadrant Enclosed by the X-axis, the Line Y = X and the Circle X2 + Y2 = 32. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.

बेरीज

उत्तर

We have,
\[x^2 + y^2 = 32\] and \[y = x\]
The point of intersection of the circle and parabola is obtained by solving the two equations
\[\therefore x^2 + x^2 = 32\]
\[ \Rightarrow 2 x^2 = 32 \]
\[ \Rightarrow x^2 = 16 \]
\[ \Rightarrow x = \pm 4 \]
\[ \therefore y = \pm 4 \]
\[\text{ Thus C }\left( 4, 4 \right)\text{ and C' }\left( - 4, - 4 \right)\text{ are points of intersection of the circle and straight line .} \]
\[\text{ Required shaded area }\left( OCAPO \right) =\text{ area }\left( OCPO \right) +\text{ area }\left( PCAP \right)\]
\[ = \int_0^4 \left| y_1 \right|dx + \int_4^\sqrt{32} \left| y_2 \right|dx\]
\[ = \int_0^4 y_1 dx + \int_4^\sqrt{32} y_2 dx ...............\left\{ \because y_1 > 0 \Rightarrow \left| y_1 \right| = y_1\text{ and }y_2 > 0 \Rightarrow \left| y_2 \right| = y_2 \right\}\]
\[ = \int_0^4 x dx + \int_4^\sqrt{32} \sqrt{32 - x^2} dx \]
\[ = \left[ \frac{x^2}{2} \right]_0^4 + \left[ \frac{1}{2}x\sqrt{32 - x^2} + \frac{1}{2} \times 32 \sin^{- 1} \left( \frac{x}{\sqrt{32}} \right) \right]_4^\sqrt{32} \]
\[ = 8 + 8\pi - 8 - 4\pi\]
\[ = 4\pi\text{ sq units . }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 36 | पृष्ठ ५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area of the curve y = sin x between 0 and π.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×