Advertisements
Advertisements
प्रश्न
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
उत्तर
The equations of the given curves are
x2 = y .....(1)
x – y + 2 = 0 .....(2)
The equation (1) represents a parabola that has its vertex at the origin, axis along the positive direction of y-axis and opens upward.
The equation (2) represents a straight line that intersects the x-axis at (–2, 0) and the y-axis at (0, 2).
Solving (1) and (2), we have
\[x^2 = x + 2\]
\[ \Rightarrow x^2 - x - 2 = 0\]
\[ \Rightarrow \left( x - 2 \right)\left( x + 1 \right) = 0\]
\[ \Rightarrow x - 2 = 0 \text { or} x + 1 = 0\]
\[ \Rightarrow x = 2 \text { or} x = - 1\]
When x = 2, y = 2 + 2 = 4
When x = –1, y = –1 + 2 = 1
Thus, the points of intersection of the given curves (1) and (2) are (–1, 1) and (2, 4).
The graph of the given curves is shown below and the shaded region OBDO represents the area bounded by the line and the parabola.
∴ Area of the required region OBDO
\[= \int_{- 1}^2 y_{\text{ line }} dx - \int_{- 1}^2 y_{\text { parabola }} dx\]
\[= \int_{- 1}^2 \left( x + 2 \right)dx - \int_{- 1}^2 x^2 dx\]
\[= \left( \frac{x^2}{2} + 2x \right)_{- 1}^2 - \left( \frac{x^3}{3} \right)_{- 1}^2 \]
\[ = \left[ \left( \frac{4}{2} + 2 \times 2 \right) - \left( \frac{1}{2} + 2 \times \left( - 1 \right) \right) \right] - \left[ \frac{8}{3} - \frac{\left( - 1 \right)}{3} \right]\]
\[ = 6 + \frac{3}{2} - \frac{8}{3} - \frac{1}{3}\]
\[ = \frac{9}{2} \text { square units }\]
Thus, the area of the region bounded by the line and given curve is \[\frac{9}{2}\] square units.
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is
Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.