Advertisements
Advertisements
प्रश्न
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
पर्याय
\[\frac{3}{32}\]
\[\frac{32}{3}\]
\[\frac{33}{2}\]
\[\frac{16}{3}\]
उत्तर

The points of intersection of the parabola and the y-axis are A(0, 2) and C(0, −2).
Therefore, the area of the required region ABCO,
\[A = \int_{- 2}^2 x d y\]
\[ = \int_{- 2}^2 \left( 4 - y^2 \right) d y\]
\[ = \left[ 4y - \frac{y^3}{3} \right]_{- 2}^2 \]
\[ = \left[ 4\left( 2 \right) - \frac{\left( 2 \right)^3}{3} \right] - \left[ 4\left( - 2 \right) - \frac{\left( - 2 \right)^3}{3} \right]\]
\[ = \left( 8 - \frac{8}{3} \right) - \left( - 8 + \frac{8}{3} \right)\]
\[ = 8 - \frac{8}{3} + 8 - \frac{8}{3}\]
\[ = 16 - \frac{16}{3}\]
\[ = \frac{32}{3}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.
Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.
Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
The curve x = t2 + t + 1,y = t2 – t + 1 represents
The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.
Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.