Advertisements
Advertisements
प्रश्न
Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.
उत्तर
Solving the given equations
The point of intersection of the three lines are A(0, 1), B(4, 13) and C(4, 9).
We need to find the area of ABC
Area under line AB = area OABCL
\[ \Rightarrow\text{ Area OABCL }= \int_0^4 \left( 3x + 1 \right) dx ...............\left[\text{ Equation of BC is }y = 3x + 1 \text{ and }x \text{ moves from A, }x = 0\text{ to }B, x = 4 \right] \]
\[ = \left[ 3\frac{x^2}{2} + x \right]_0^4 \]
\[ = \left[ 3\frac{4^2}{2} + 4 \right]\]
\[ = 24 + 4 = 28 \text{ sq . units }\]
Area under line BC = Area OACL
\[ \Rightarrow\text{ Area OACL }= \int_0^4 \left( 2x + 1 \right)dx ................\left[\text{ Equation of BC is }y = 2x + 1\text{ and }x \text{ moves from A, }x = 0\text{ to }C, x = 4 \right] \]
\[ = \left[ 2\frac{x^2}{2} + x \right]_0^4 \]
\[ = 16 + 4 = 20\text{ sq . units }\]
\[ \therefore\text{ Area }\Delta \text{ ABC } \hspace{0.167em} = \text{ Area OABCL - Area OACL }\]
\[ \Rightarrow\text{ Area }\Delta\text{ ABC }= 28 - 20 = 8\text{ sq . units }\]
\[ \therefore\text{ Area of triangle formed by the three given lines = 8 sq . units }\]
APPEARS IN
संबंधित प्रश्न
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Find the area of the region included between the parabola y2 = x and the line x + y = 2.
Find the area bounded by the curves x = y2 and x = 3 − 2y2.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
Find the area of the region included between y2 = 9x and y = x
Find the area of region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.
Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.
Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.