मराठी

Using Integration, Find the Area of the Region Bounded by the Triangle Abc Whose Vertices A, B, C Are (−1, 1), (0, 5) and (3, 2) Respectively. - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.

उत्तर

Equation of line AB is
\[y - 1 = \left( \frac{5 - 1}{0 + 1} \right)\left( x - \left( - 1 \right) \right)\]
\[ \Rightarrow y = 4x + 5 \]
Area under the line AB = area ABDO
\[ = \int_{- 1}^0 \left( 4x + 5 \right) dx\]
\[ = \left[ 4\frac{x^2}{2} + 5x \right]_{- 1}^0 \]
\[ = 0 - \left( 2 - 5 \right)\]
\[ \Rightarrow\text{ Area ABDO }= 3\text{ sq . units .} . . \left( 1 \right)\]
Equation of line BC is 
\[y - 5 = \left( \frac{2 - 5}{3 - 0} \right)\left( x - 0 \right)\]
\[ \Rightarrow y = - x + 5\]
Area under line BC = Area OBCP
\[ = \int_0^3 \left( - x + 5 \right) dx\]
\[ = \left[ - \frac{x^2}{2} + 5x \right]_0^3 \]
\[ = - \frac{9}{2} + 15 - 0\]
\[ \Rightarrow\text{ Area OBCP }= \frac{21}{2}\text{ sq . units . }. . \left( 2 \right)\]
Equation of line CA is
\[y - 2 = \left( \frac{2 - 1}{3 - \left( - 1 \right)} \right)\left( x - 3 \right) \]
\[ \Rightarrow 4y = x + 5\]
\[ \therefore\text{ Area under line AC = Area ACPA }\]
\[ \Rightarrow A = \int_{- 1}^3 \left( \frac{x + 5}{4} \right)dx\]
\[ \Rightarrow A = \frac{1}{4} \left[ \frac{x}{2}^2 + 5x \right]_{- 1}^3 \]
\[ \Rightarrow A = \frac{1}{4}\left[ \frac{3}{2}^2 + 5 \times 3 - \frac{\left( - 1 \right)}{2}^2 + 5\left( - 1 \right) \right]\]
\[ \Rightarrow A = \frac{1}{4}\left[ \frac{9}{2} + 15 - \frac{1}{2} + 5 \right]\]
\[ \Rightarrow\text{ Area ACPA }= \frac{24}{4} = 6 \text{ sq . units }. . . \left( 3 \right)\]
\[\text{ From }\left( 1 \right), \left( 2 \right)\text{ and }\left( 3 \right)\]
\[\text{ Area }\Delta\text{ ABC }=\text{ Area ABDO + Area OBCP - Area ACPA }\]
\[ \Rightarrow A = 3 + \frac{21}{2} - 6\]
\[ \Rightarrow A = \frac{21}{2} - 3 = \frac{21 - 6}{2} = \frac{15}{2} \text{ sq . units }\]
\[ \therefore\text{ Area }\Delta\text{ ABC }= \frac{15}{2}\text{ sq . units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 7 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).


Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


The area of the region bounded by the curve y = x2 and the line y = 16 ______.


Find the area of the region included between y2 = 9x and y = x


The area of the region bounded by the circle x2 + y2 = 1 is ______.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×