Advertisements
Advertisements
प्रश्न
Find the area lying above the x-axis and under the parabola y = 4x − x2.
उत्तर
\[\text{ The equation }y = 4x - x^2\text{ represents a parabola opening downwards and cutting the }x \text{axis at O(0, 0) and }B(4, 0)\]
\[\text{ Slicing the region above x axis in vertical strips of length }= \left| y \right|\text{ and width }= dx , \text{ area of corresponding rectangle is }= \left| y \right| dx\]
\[\text{ Since the corresponding rectangle can move from } x = 0\text{ to } x = 4, \]
\[ \therefore \text{ Required area OABO is }\]
\[A = \int_0^4 \left| y \right| dx = \int_0^4 y dx .............\left[\text{ As, } y > 0\text{ for }0 \leq x \leq 4 \Rightarrow \left| y \right| = y \right]\]
\[ \Rightarrow A = \int_0^4 \left( 4x - x^2 \right)dx \]
\[ \Rightarrow A = \left[ \frac{4 x^2}{2} - \frac{x^3}{3} \right]_0^4 \]
\[ \Rightarrow A = 32 - \frac{64}{3}\]
\[ \Rightarrow A = \frac{32}{3}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.
Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.
Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`
Find the area of the region bounded by the curve ay2 = x3, the y-axis and the lines y = a and y = 2a.
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area of the region bounded by the circle x2 + y2 = 1 is ______.
The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0 ≤ x - (<pi)/2` is
The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.