Advertisements
Advertisements
प्रश्न
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.
उत्तर
To find the points of intersection between the parabola and the line let us substitute y = 2x − 4 in y2 = 4x.
\[\left( 2x - 4 \right)^2 = 4x\]
\[ \Rightarrow 4 x^2 + 16 - 16x = 4x\]
\[ \Rightarrow 4 x^2 - 20x + 16 = 0\]
\[ \Rightarrow x^2 - 5x + 4 = 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 4 \right) = 0\]
\[ \Rightarrow x = 1, 4\]
\[\Rightarrow y = - 2, 4\]
Therefore, the points of intersection are C(1, −2) and A(4, 4).
Using Vertical Strips:-
The area of the required region ABCD
\[= \int_0^4 2\sqrt{x} d x - \int_1^4 \left( 2x - 4 \right) d x\]
\[ = \left[ \frac{4}{3} x^\frac{3}{2} \right]_0^4 - \left[ x^2 - 4x \right]_1^4 \]
\[ = \left[ \left\{ \frac{4}{3} \left( 4 \right)^\frac{3}{2} \right\} - \left\{ \frac{4}{3} \left( 0 \right)^\frac{3}{2} \right\} \right] - \left[ \left( 4^2 - 4 \times 4 \right) - \left( 1^2 - 4 \times 1 \right) \right]\]
\[ = \left[ \frac{32}{3} - 0 \right] - \left[ 0 - \left( 1 - 4 \right) \right]\]
\[ = \frac{32}{3} - 3\]
\[ = \frac{23}{3}\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.
Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.
Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .
Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
Find the area of the region bounded by the curves y2 = 9x, y = 3x
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.
The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.
The curve x = t2 + t + 1,y = t2 – t + 1 represents
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.
Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.
Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.
Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.
Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.