Advertisements
Advertisements
प्रश्न
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
पर्याय
0
- \[\frac{1}{3}\]
- \[\frac{2}{3}\]
- \[\frac{4}{3}\]
उत्तर

The given equation of the curve is
\[y = x \left| x \right|\]
\[ \Rightarrow y = \begin{cases} x^2 & x \geq 0\\ - x^2 & x < 0 \end{cases}\]
\[\text{ Now, solving }x = 1\text{ and }y = x\left| x \right|\text{ we get }\]
\[x = 1 \Rightarrow y = 1 \]
\[ \Rightarrow A\left( 1, 1 \right)\text{ is point of intersection of the cuve }y = x\left| x \right|\text{ and }x = 1\]
\[\text{ Also, solving }x = - 1\text{ and }y = x\left| x \right|\text{ we get }\]
\[x = - 1 \Rightarrow y = - 1\]
\[ \Rightarrow A'\left( - 1, - 1 \right)\text{ is point of intersection of the cuve }y = x\left| x \right|\text{ and }x = - 1\]
\[\text{ If P}\left( x, y_1 \right) , x > 0\text{ is a point on }y = x \left| x \right|\text{ then }y_1 > 0 \Rightarrow \left| y_1 \right| = y_1 \]
\[ \text{ And Q}\left( x, y_2 \right) , x < 0\text{ is a point on }y = x \left| x \right|\text{ then }y_2 < 0 \Rightarrow \left| y_2 \right| = - y_2 \]
\[\text{ Required area }= \int_{- 1}^0 \left| y_2 \right| dx + \int_0^1 \left| y_1 \right| dx\]
\[ = \int_{- 1}^0 - y_2 dx + \int_0^1 y_1 dx\]
\[ = \int_{- 1}^0 - \left( - x^2 \right) dx + \int_0^1 x^2 dx\]
\[ = \int_{- 1}^0 x^2 dx + \int_0^1 x^2 dx\]
\[ = \left[ \frac{x^3}{3} \right]_{- 1}^0 + \left[ \frac{x^3}{3} \right]_0^1 \]
\[ = \left[ 0 - \frac{\left( - 1 \right)}{3}^3 \right] + \left( \frac{1^3}{3} - 0 \right)\]
\[ = \frac{1}{3} + \frac{1}{3}\]
\[ = \frac{2}{3}\text{ sq units }\]
APPEARS IN
संबंधित प्रश्न
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is
The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .
Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.
Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.