हिंदी

Find the Equation of the Standard Ellipse, Taking Its Axes as the Coordinate Axes, Whose Minor Axis is Equal to the Distance Between the Foci and Whose Length of Latus Rectum is 10. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 

योग

उत्तर

\[\text{ According to the question, the minor axis is equal to the distance between the foci }.\]
\[\text{ i . e } . 2b = 2\text{ ae and } \frac{{2b}^2}{a} = 10 \text{ or } b^2 = 5a \]
\[ \Rightarrow b = ae\]
\[ \Rightarrow b^2 = a^2 e^2 \]
\[ \Rightarrow b^2 = a^2 \left( 1 - \frac{b^2}{a^2} \right) \left( \because e = \sqrt{1 - \frac{b^2}{a^2}} \right)\]
\[ \Rightarrow b^2 = a^2 - b^2 \]
\[ \Rightarrow a^2 = 2 b^2 \]
\[ \Rightarrow a^2 = 10a \left( \because b^2 = 5a \right)\]
\[ \Rightarrow a = 10\]
\[ \Rightarrow b^2 = 5a \]
\[ \Rightarrow b^2 = 50\]
\[\text{ Substituting the values of a and b in the equation of an ellipse, we get }:\]
\[\frac{x^2}{100} + \frac{y^2}{50} = 1\]
\[ \therefore x^2 + 2 y^2 = 100\]
\[\text{This is the required equation of the ellipse }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Find the area of the curve y = sin x between 0 and π.


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×