मराठी

Find the Area Bounded by the Curve Y = Cos X, X-axis and the Ordinates X = 0 and X = 2π. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.

उत्तर

\[\text{ The shaded region is the required area bound by the curve }y = \cos x , x\text{ axis and }x = 0 , x = 2\pi\]
\[\text{ Consider a vertical strip of length }= \left| y \right| \text{ and width }= dx \text{ in the first quadrant }\]
\[\text{ Area of the approximating rectangle }= \left| y \right| dx\]
\[\text{ The approximating rectangle moves from }x = 0\text{ to }x = 2\pi\]
\[\text{ Now }, 0 \leq x \leq \frac{\pi}{2}\text{ and }\frac{3\pi}{2} \leq x \leq 2\pi , y > 0 \Rightarrow \left| y \right| = y\]
\[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2}, y < 0 \Rightarrow \left| y \right| = - y\]
\[ \Rightarrow\text{ Area of the shaded region }= \int_0^{2\pi} \left| y \right| dx\]
\[ \Rightarrow A = \int_0^\frac{\pi}{2} \left| y \right| dx + \int_\frac{\pi}{2}^\frac{3\pi}{2} \left| y \right| dx + \int_\frac{3\pi}{2}^{2\pi} \left| y \right| dx\]
\[ \Rightarrow A = \int_0^\frac{\pi}{2} y dx + \int_\frac{\pi}{2}^\frac{3\pi}{2} - y dx + \int_\frac{3\pi}{2}^{2\pi} y dx\]
\[ \Rightarrow A = \int_0^\frac{\pi}{2} \cos x dx + \int_\frac{\pi}{2}^\frac{3\pi}{2} - \cos x dx + \int_\frac{3\pi}{2}^{2\pi} \cos x dx\]
\[ \Rightarrow A = \left[ \sin x \right]_0^\frac{\pi}{2} + \left[ - \sin x \right]_\frac{\pi}{2}^\frac{3\pi}{2} + \left[ - \sin x \right]_\frac{3\pi}{2}^{2\pi} \]
\[ \Rightarrow A = 1 + \left( 1 + 1 \right) + \left( 0 - \left( - 1 \right) \right)\]
\[ \Rightarrow A = 4\text{ sq . units }\]
\[\text{ Area bound by the curve }y = \cos x, x -\text{ axis and }x = 0, x = 2\pi = 4\text{ sq . units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.1 | Q 23 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×