हिंदी

Find the Area Enclosed by the Parabolas Y = 5x2 And Y = 2x2 + 9. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.

योग

उत्तर

\[y = 5 x^2\text{ represents a parabola with vertex at O }\left( 0, 0 \right)\text{ and opening upwards , symmetrical about + ve }y \text{ axis }\]
\[y = 2 x^2 + 9\text{ represents the wider parabola , with vertex at C }\left( 0, 9 \right) \]
To find point of intersection , solve the two equations
\[5 x^2 = 2 x^2 + 9 \]
\[ \Rightarrow 3 x^2 = 9\]
\[ \Rightarrow x = \pm \sqrt{3}\]
\[ \Rightarrow y = 15\]
\[\text{ Thus A }\left( \sqrt{3}, 15 \right)\text{ and A'}\left( - \sqrt{3}, 15 \right)\text{ are points of intersection of the two parabolas . }\]
\[\text{ Shaded area A'OA }= 2 \times\text{ area }\left( OCAO \right)\]
\[\text{ Consider a vertical stip of length }= \left| y_2 - y_1 \right|\text{ and width }= dx \]
\[\text{ Area of approximating rectangle }= \left| y_2 - y_1 \right|dx \]
\[\text{ The approximating rectangle moves from }x = 0 \text{ to }x = \sqrt{3}\]
\[ \therefore \text{ Area }\left( OCAO \right) = \int_0^\sqrt{3} \left| y_2 - y_1 \right|dx = \int_0^\sqrt{3} \left( y_2 - y_1 \right)dx .............\left\{ \because \left| y_2 - y_1 \right| = y_2 - y_1\text{ as }y_2 > y_1 \right\}\]
\[ = \int_0^\sqrt{3} \left( 2 x^2 + 9 - 5 x^2 \right)dx \]
\[ = \int_0^\sqrt{3} \left( 9 - 3 x^2 \right)dx\]
\[ = \left[ \left( 9x - 3\frac{x^3}{3} \right) \right]_0^\sqrt{3} \]
\[ = 9\sqrt{3} - 3\sqrt{3}\]
\[ = 6\sqrt{3}\text{ sq units }\]
\[ \therefore\text{ Shaded area B'A'AB }= 2 \text{ area OCAO }= 2 \times 6\sqrt{3} = 12\sqrt{3}\text{ sq units }\]
\[\text{ Thus area enclosed by two parabolas }= 12\sqrt{3}\text{ sq units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.3 | Q 21 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area of the region bounded by y = | x − 1 | and y = 1.


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×