हिंदी

Using Integration, Find the Area of the Region Bounded by the Triangle Whose Vertices Are (2, 1), (3, 4) and (5, 2). - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).

उत्तर

\[\text{ Consider the points A(2, 1), B(3, 4) and C(5, 2) }\]
\[\text{ We need to find area of shaded triangle ABC }\]
\[\text{ Equation of AB is }\]
\[y - 1 = \left( \frac{4 - 3}{3 - 2} \right)\left( x - 2 \right)\]
\[ \Rightarrow 3x - y - 5 = 0 . . . \left( 1 \right)\]
Equation of BC is
\[y - 4 = \left( \frac{2 - 4}{5 - 3} \right)\left( x - 3 \right)\]
\[ \Rightarrow x = y - 7 = 0 . . . \left( 2 \right)\]
Equation of CA is
\[ y - 2 = \left( \frac{2 - 1}{5 - 2} \right)\left( x - 5 \right)\]
\[ \Rightarrow x - 3y + 2 = 0 . . . \left( 3 \right)\]
\[\text{ Area of }\Delta ABC = \text{ Area of }\Delta ABD +\text{ Area of }\Delta DBC\]
\[\text{ In }\Delta ABD, \]
\[\text{ Consider point }P(x, y_2 ) \text{ on AB and }Q(x, y_1 )\text{ on AD }\]
\[\text{ Thus, the area of approximating rectangle with length }= \left| y_2 - y_1 \right| \text{ and width }= dx\text{ is }\left| y_2 - y_1 \right| dx\]
\[\text{ The approximating rectangle moves from }x = 2\text{ to }x = 3\]
\[ \therefore\text{ Area of }\Delta ABD = \int_2^3 \left| y_2 - y_1 \right| dx = \int_2^3 \left( y_2 - y_1 \right) dx \]
\[ \Rightarrow A = \int_2^3 \left( \left( 3x - 5 \right) - \left( \frac{x + 1}{3} \right) \right) dx\]
\[ \Rightarrow A = \int_2^3 \frac{\left( 9x - 15 - x - 1 \right)}{3} dx \]
\[ \Rightarrow A = \int_2^3 \frac{\left( 8x - 16 \right)}{3} dx\]
\[ \Rightarrow A = \frac{1}{3} \left[ 8\frac{x^2}{2} - 16x \right]_2^3 \]
\[ \Rightarrow A = \frac{1}{3}\left[ \left( 4 \times 3^2 \right) - \left( 16 \times 3 \right) - \left( 4 \times 2^2 \right) + \left( 16 \times 2 \right) \right]\]
\[ \Rightarrow A = \frac{1}{3}\left( 68 - 64 \right)\]
\[ \Rightarrow A = \frac{4}{3}\text{ sq . units }\]
\[\text{ Similarly, for }S(x, y_4 )\text{ on AB and }R(x, y_3 )\text{ on DC }\]
\[\text{ Area of approximating rectangle of length }\left| y_4 - y_3 \right|\text{ and width }dx = \left| y_4 - y_3 \right| dx\]
\[\text{ Approximating rectangle moves from }x = 3\text{ to }x = 5\]
\[ \therefore\text{ Area BDC }= \int_3^5 \left| y_4 - y_3 \right| dx\]
\[ \Rightarrow A = \int_3^5 \left( \left( 7 - x \right) - \frac{\left( x + 1 \right)}{3} \right) dx\]
\[ \Rightarrow A = \frac{1}{3} \int_3^5 \left( 20 - 4x \right) dx\]
\[ \Rightarrow A = \frac{1}{3} \left[ 20 x - 4\frac{x^2}{2} \right]_3^5 \]
\[ \Rightarrow A = \frac{1}{3}\left[ \left( 100 - 50 \right) - \left( 60 - 18 \right) \right]\]
\[ \Rightarrow A = \frac{1}{3}\left( 50 - 42 \right) = \frac{8}{3}\text{ sq . units }\]
\[ \therefore\text{ Area of } \Delta ABC =\text{ Area of }\Delta ABD +\text{ Area of }\Delta DBC = \frac{4}{3} + \frac{8}{3} = \frac{12}{3} = 4 \text{ sq . units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.3 | Q 6 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×