English

Determine the Area Under the Curve Y = √ a 2 − X 2 Included Between the Lines X = 0 and X = A. - Mathematics

Advertisements
Advertisements

Question

Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.

Solution

We have, 
\[y = \sqrt{a^2 - x^2}\]
\[ \Rightarrow y^2 = a^2 - x^2 \]
\[ \Rightarrow x^2 + y^2 = a^2 \]
\[\text{ Since in the given equation }x^2 + y^2 = a^2 , \text{ all the powers of both } x\text{ and }y\text{ are even, the curve is symmetrical about both the axis }. \]
\[ \therefore\text{ Required area = area enclosed by circle in first quadrant }\]
\[(a, 0 ), ( - a, 0)\text{ are the points of intersection of curve and }x -\text{ axis }\]
\[(0, a), (0, - a)\text{ are the points of intersection of curve and }y -\text{ axis }\]
\[\text{ Slicing the area in the first quadrant into vertical stripes of height }= \left| y \right|\text{ and width }= dx\]
\[ \therefore\text{ Area of approximating rectangle }= \left| y \right| dx\]
\[\text{ Approximating rectangle can move between }x = 0\text{ and }x = a\]
\[A =\text{ Area of enclosed curve in first quadrant }= \int_0^a \left| y \right| dx\]
\[ \Rightarrow A = \int_0^a \sqrt{a^2 - x^2} d x\]
\[ = \left[ \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} \right]_0^a \]
\[ = \frac{1}{2} a^2 \sin^{- 1} 1\]
\[ = \frac{1}{2} a^2 \frac{\pi}{2} \]
\[ = \frac{a^2 \pi}{4}\text{ sq units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.1 | Q 13 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Find the area bounded by the curve y = sin x between x = 0 and x = 2π.


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Using definite integrals, find the area of the circle x2 + y2 = a2.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Find the area of the curve y = sin x between 0 and π.


Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×