Advertisements
Advertisements
Question
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
Options
\[\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}\]
\[\frac{\pi}{6} + \frac{\sqrt{3} + 1}{8}\]
\[\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}\]
none of these
Solution

We have,
\[ x^2 + y^2 - 6x - 4y + 12 \leq 0\]
\[y \leq x\]
\[x \leq \frac{5}{2}\]
Following are the corresponding equations of the given inequation .
\[ x^2 + y^2 - 6x - 4y + 12 = 0 . . . . . \left( 1 \right)\]
\[y = x . . . . . \left( 2 \right)\]
\[x = \frac{5}{2} . . . . . \left( 3 \right)\]
Here, ABC is our required region in which point A is intersection of (1) and (3), point B is intersection of (1) and (2) and point C is intersection of (2) and (3).
By solving (1), (2) and (3) we get the coordinates of B and C as
\[B \equiv \left( 2, 2 \right)\]
\[C \equiv \left( \frac{5}{2}, \frac{5}{2} \right)\]
Now, the equation of the circle is,
\[x^2 + y^2 - 6x - 4y + 12 = 0\]
\[ \Rightarrow \left( x - 3 \right)^2 + \left( y - 2 \right)^2 = 1\]
\[ \Rightarrow \left( y - 2 \right)^2 = 1 - \left( x - 3 \right)^2 \]
\[ \Rightarrow y - 2 = \pm \sqrt{1 - \left( x - 3 \right)^2}\]
\[ \Rightarrow y = \pm \sqrt{1 - \left( x - 3 \right)^2} + 2\]
\[ \Rightarrow y = \sqrt{1 - \left( x - 3 \right)^2} + 2 or - \sqrt{1 - \left( x - 3 \right)^2} + 2\]
\[y = \sqrt{1 - \left( x - 3 \right)^2} + 2\text{ is not possible,} \]
\[\text{ Therefore, }y = - \sqrt{1 - \left( x - 3 \right)^2} + 2\]
The area of the required region ABC,
\[A = \int_2^\frac{5}{2} \left( y_2 - y_1 \right) dx ............\left( \text{Where, }y_1 = - \sqrt{1 - \left( x - 3 \right)^2} + 2\text{ and }y_2 = x \right)\]
\[ = \int_2^\frac{5}{2} \left[ x - \left( - \sqrt{1 - \left( x - 3 \right)^2} + 2 \right) \right] d x\]
\[ = \int_2^\frac{5}{2} \left[ x + \sqrt{1 - \left( x - 3 \right)^2} - 2 \right] d x\]
\[ = \left[ \frac{x^2}{2} + \frac{\left( x - 3 \right)}{2}\sqrt{1 - \left( x - 3 \right)^2} + \frac{1}{2} \sin^{- 1} \left( x - 3 \right) - 2x \right]_2^\frac{5}{2} \]
\[ = \left[ \frac{\left( \frac{5}{2} \right)^2}{2} + \frac{\frac{5}{2} - 3}{2}\sqrt{1 - \left\{ \left( \frac{5}{2} \right) - 3 \right\}^2} + \frac{1}{2} \sin^{- 1} \left( \frac{5}{2} - 3 \right) - 2\left( \frac{5}{2} \right) \right] - \left[ \frac{2^2}{2} + \frac{2 - 3}{2}\sqrt{1 - \left( 2 - 3 \right)^2} + \frac{1}{2} \sin^{- 1} \left( 2 - 3 \right) - 2\left( 2 \right) \right]\]
\[ = \left[ \frac{25}{8} - \frac{1}{4}\sqrt{1 - \frac{1}{4}} + \frac{1}{2} \sin^{- 1} \left( - \frac{1}{2} \right) - 5 \right] - \left[ 2 - \frac{1}{2} \times 0 + \frac{1}{2} \sin^{- 1} \left( - 1 \right) - 4 \right]\]
\[ = \left[ - \frac{15}{8} - \frac{\sqrt{3}}{8} + \frac{1}{2} \times \left( - \frac{\pi}{6} \right) \right] - \left[ + \frac{1}{2} \times \left( - \frac{\pi}{2} \right) - 2 \right]\]
\[ = - \frac{15}{8} - \frac{\sqrt{3}}{8} - \frac{\pi}{12} + \frac{\pi}{4} + 2\]
\[ = \frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}\]
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Find the area lying above the x-axis and under the parabola y = 4x − x2.
Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .
The area bounded by the curve y = 4x − x2 and the x-axis is __________ .
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.
Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).