मराठी

The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ π2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.

पर्याय

  • `sqrt(2)` sq.units

  • `(sqrt(2) + 1)` sq.units

  • `(sqrt(2) - 1)` sq.units

  • `(2sqrt(2) - 1)` sq.units

MCQ
रिकाम्या जागा भरा

उत्तर

The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is `(sqrt(2) - 1)` sq.units.

Explanation:

Given that y-axis, y = cos x, y = sin x, 0 ≤ x ≤ `pi/2`

Required area = `int_0^(pi/4) cos x  "d"x - int_0^(pi/4) sin x  "d"x`

= `[sin x]_0^(pi/4) - [- cos x]_0^(pi/4)`

= `[sin  pi/4 - sin 0] + [cos  pi/4 - cos 0]`

= `[1/sqrt(2) - 0 + 1/sqrt(2) - 1]`

= `2/sqrt(2) - 1`

= `(sqrt(2) - 1)` sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application Of Integrals - Exercise [पृष्ठ १७७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 8 Application Of Integrals
Exercise | Q 24 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


The curve x = t2 + t + 1,y = t2 – t + 1 represents


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×