Advertisements
Advertisements
Question
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Options
2
- \[\frac{9}{4}\]
- \[\frac{9}{3}\]
- \[\frac{9}{2}\]
Solution
\[\frac{9}{4}\]
y2 = 4x represents a parabola with vertex at origin O(0, 0) and symmetric about +ve x-axis
y = 3 is a straight line parallel to the x-axis
Point of intersection of the line and the parabola is given by
Substituting y = 3 in the equation of the parabola
\[y^2 = 4x\]
\[ \Rightarrow 3^2 = 4x\]
\[ \Rightarrow x = \frac{9}{4}\]
\[\text{ Thus A }\left( \frac{9}{4} , 3 \right)\text{ is the point of intersection of the parabola and straight line }.\]
Required area is the shaded area OABO
Using the horizontal strip method ,
\[\text{ Area }\left( OABO \right) = \int_0^3 \left| x \right| dy\]
\[ = \int_0^3 \frac{y^2}{4} dy\]
\[ = \left[ \frac{1}{4}\left( \frac{y^3}{3} \right) \right]_0^3 \]
\[ = \frac{3^3}{12}\]
\[ = \frac{9}{4}\text{ sq . units }\]
APPEARS IN
RELATED QUESTIONS
Find the area bounded by the curve y2 = 4ax, x-axis and the lines x = 0 and x = a.
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.
Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.
Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.
Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.
Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.
Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.
Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?
The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The area bounded by the curve y = 4x − x2 and the x-axis is __________ .
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.