English

Find the area bounded by the curve y^2 = 4ax, x-axis and the lines x = 0 and x = a. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.

Solution

Area bounded = `int_0^aydx`

`=int_0^asqrt(4ax)dx`

`=2sqrtaint_0^ax^(1/2)dx`

`=2sqrta[(x^(1/2+1))/(1/2+1)]_0^a`

`=2sqrtaxx2/3xxa^(3/2)`

`=4/3a^(1/2+3/2)`

`=4/3a^2`

 

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March)

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area of the region included between y2 = 9x and y = x


Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×