Advertisements
Advertisements
Question
Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.
Solution
\[y^2 = 8x\text{ represents a parabola with vertex at origin and axis of symmetry along the + ve direction of x - axis}\]
\[x =\text{ 2 is line parallel to y - axis}\]
\[\text{ Let } (x, y)\text{ be a given point on the parabola }, y^2 = 8x\]
\[\text{ Since parabola }y^2 = 8x\text{ is symmetric about x - axis } , \]
\[ \therefore\text{ Required area }= 2 \left(\text{ area OCAO }\right)\]
\[\text{ On slicing the area above x - axis into vertical strips of length }= \left| y \right|\text{ and width }= dx \]
\[ \Rightarrow\text{ area of rectangular strip }= \left| y \right| dx\]
\[\text{The approximating rectangle moves between }x = 0\text{ and }x = 2 . \]
\[\text{ So, area A} = 2 \left(\text{ area OCAO }\right)\]
\[ \Rightarrow A = 2 \int_0^2 \left| y \right| dx = 2 \int_0^2 y dx \text{ as }y > 0 \]
\[ \Rightarrow A = 2 \int_0^2 \sqrt{8x} dx \]
\[ \Rightarrow A = 2 \times 2 \int_0^2 \sqrt{2x} dx = 4\sqrt{2} \int_0^2 \sqrt{x} dx\]
\[ \Rightarrow A = 4\sqrt{2} \left[ \frac{x^\frac{3}{2}}{\frac{3}{2}} \right]_0^2 = \frac{8}{3}\sqrt{2}\left[ 2^\frac{3}{2} - 0 \right] = \frac{8}{3} \times 2^2 = \frac{32}{3} sq . units\]
\[ \therefore\text{ Area }A = \frac{32}{3}\text{ sq . units}\]
APPEARS IN
RELATED QUESTIONS
Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Find the area lying above the x-axis and under the parabola y = 4x − x2.
Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.
Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.
Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.