Advertisements
Advertisements
Question
The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .
Options
2\[\left( \sqrt{2} - 1 \right)\]
- \[\sqrt{2} - 1\]
- \[\sqrt{2} + 1\]
- \[\sqrt{2}\]
Solution

Points of intersection is obtained by solving
\[y = \sin x\text{ and }y = \cos x \]
\[ \therefore \sin x = \cos x\]
\[ \Rightarrow x = \frac{\pi}{4}\]
\[\text{ Thus the two functions intersect at }x = \frac{\pi}{4}\]
\[ \Rightarrow y = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}\]
\[\text{ Hence A }\left( \frac{\pi}{4}, \frac{1}{\sqrt{2}} \right)\text{ is the point of intersection.} \]
\[ \therefore\text{ Area bound by the curves and the }y - \text{ axis when }0 \leq x \leq \frac{\pi}{2}, \]
\[A = \int_0^\frac{1}{\sqrt{2}} \left| x_1 \right| dy + \int_\frac{1}{\sqrt{2}}^1 \left| x_2 \right| dy\]
\[ = \int_0^\frac{1}{\sqrt{2}} x_1 dy + \int_\frac{1}{\sqrt{2}}^1 x_2 dy\]
\[ = \int_0^\frac{1}{\sqrt{2}} \sin^{- 1} y dy + \int_\frac{1}{\sqrt{2}}^1 \cos^{- 1} y dy\]
\[ = \left[ y \sin^{- 1} y + \sqrt{1 - y^2} \right]_0^\frac{1}{\sqrt{2}} + \left[ y \cos {}^{- 1} y - \sqrt{1 - y^2} \right]_\frac{1}{\sqrt{2}}^1 \]
\[ = \left[ \frac{1}{\sqrt{2}} \sin^{- 1} \frac{1}{\sqrt{2}} + \sqrt{1 - \frac{1}{2}} - 1 \right] + \left[ 1 \times \cos {}^{- 1} 1 - 0 - \frac{1}{\sqrt{2}}\cos {}^{- 1} \frac{1}{\sqrt{2}} + \sqrt{1 - \frac{1}{2}} \right]\]
\[ = \left[ \frac{1}{\sqrt{2}} \times \frac{\pi}{4} + \frac{1}{\sqrt{2}} - 1 \right] + \left[ 0 - \frac{1}{\sqrt{2}} \times \frac{\pi}{4} + \frac{1}{\sqrt{2}} \right]\]
\[ = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1\]
\[ = \frac{2}{\sqrt{2}} - 1\]
\[ = \left( \sqrt{2} - 1 \right)\text{ sq units }\]
APPEARS IN
RELATED QUESTIONS
Find the area bounded by the curve y2 = 4ax, x-axis and the lines x = 0 and x = a.
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.
[Hint: y = x2 if x > 0 and y = –x2 if x < 0]
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.
Using definite integrals, find the area of the circle x2 + y2 = a2.
Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Find the area of the region bounded by x2 = 4ay and its latusrectum.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .
The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .
The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .
The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is
Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.
Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
The area of the region S = {(x, y): 3x2 ≤ 4y ≤ 6x + 24} is ______.
Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.