Advertisements
Advertisements
Question
Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\] in the first quadrant and x-axis.
Solution
The curve \[y = \sqrt{x}\] or \[y^2 = x\] represents the parabola opening towards the positive x-axis.
The curve x = 2y + 3 represents a line passing through (3, 0) and \[\left( 0, - \frac{3}{2} \right)\]
Solving \[y^2 = x\] and x = 2y + 3, we get
\[y^2 = 2y + 3\]
\[ \Rightarrow y^2 - 2y - 3 = 0\]
\[ \Rightarrow \left( y - 3 \right)\left( y + 1 \right) = 0\]
\[ \Rightarrow y = 3\text{ or }y = - 1\]
∴ Required area = Area of the shaded region
\[= \int_0^3 x_{\text{ line }} dy - \int_0^3 x_{\text{ parabola }} dy\]
\[ = \int_0^3 \left( 2y + 3 \right)dy - \int_0^3 y^2 dy\]
\[ = \left.\frac{\left( 2y + 3 \right)^2}{2 \times 2}\right|_0^3 - \left.\frac{y^3}{3}\right|_0^3 \]
\[ = \frac{1}{4}\left[ \left( 2 \times 3 + 3 \right)^2 - 3^2 \right] - \frac{1}{3}\left( 3^3 - 0 \right)\]
\[ = \frac{1}{4}\left( 81 - 9 \right) - \frac{1}{3}\left( 27 - 0 \right)\]
\[ = 18 - 9\]
\[ = 9\text{ square units }\]
APPEARS IN
RELATED QUESTIONS
Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.
Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.
Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4
Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.
Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Find the area bounded by the curves x = y2 and x = 3 − 2y2.
Find the area of the region bounded by y = | x − 1 | and y = 1.
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.
Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them.
The area enclosed by the circle x2 + y2 = 2 is equal to ______.
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.