English

The Area Included Between the Parabolas Y2 = 4x and X2 = 4y is (In Square Units) - Mathematics

Advertisements
Advertisements

Question

The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)

Options

  • 4/3

  • 1/3

  • 16/3

  • 8/3

MCQ

Solution

16/3

 


We have, 
\[x = \frac{y^2}{4} . . . . . \left( 1 \right)\]
\[ x^2 = 4y . . . . . \left( 2 \right)\]
Points of intersection of two parabola is given by,
\[\left( \frac{y^2}{4} \right)^2 = 4y\]
\[ \Rightarrow y^4 - 64y = 0\]
\[ \Rightarrow y\left( y^3 - 64 \right) = 0\]
\[ \Rightarrow y = 0, 4\]
\[\Rightarrow x = 0, 4\]
Therefore, the points of intersection are A(0, 0) and C(4, 4).
Therefore, the area of the required region ABCD,
\[= \int_0^4 \left( y_1 - y_2 \right) d x ..............\left(\text{where, }y_1 = 2\sqrt{x}\text{ and }y_2 = \frac{x^2}{4} \right)\]
\[ = \int_0^4 \left( 2\sqrt{x} - \frac{x^2}{4} \right) d x\]
\[ = \left[ 2 \times \frac{2 x^\frac{3}{2}}{3} - \frac{x^3}{12} \right]_0^4 \]
\[ = \left( 2 \times \frac{2 \left( 4 \right)^\frac{3}{2}}{3} - \frac{\left( 4 \right)^3}{12} \right) - \left( 2 \times \frac{2 \left( 0 \right)^\frac{3}{2}}{3} - \frac{\left( 0 \right)^3}{12} \right)\]
\[ = \left( \frac{32}{3} - \frac{16}{3} \right) - 0\]
\[ = \frac{16}{3}\text{ square units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - MCQ [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
MCQ | Q 2 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .


Area lying in first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2, is


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Find the area of the curve y = sin x between 0 and π.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×