English

Find the Coordinates of a Point of the Parabola Y = X2 + 7x + 2 Which is Closest to the Straight Line Y = 3x − 3. - Mathematics

Advertisements
Advertisements

Question

Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.

Solution

Let the coordinates of the required point of the parabola y = x2 + 7x + 2 be (h, k).

\[\therefore k = h^2 + 7h + 2\]   ..... (1)

Distance of the point (h, k) from the straight line y = 3x − 3 is given by \[D = \frac{\left| 3h - k - 3 \right|}{\sqrt{\left( 3 \right)^2 + \left( - 1 \right)^2}} = \frac{\left| 3h - k - 3 \right|}{\sqrt{10}}\]  .......(2)

From (1) and (2), we get

\[D = \frac{\left| 3h - h^2 - 7h - 2 - 3 \right|}{\sqrt{10}}\]

\[= \frac{\left| - h^2 - 4h - 5 \right|}{\sqrt{10}}\]

\[= \frac{h^2 + 4h + 5}{\sqrt{10}}\]

Differentiating both sides w.r.t. h, we get

\[\frac{dD}{dh} = \frac{2h + 4}{\sqrt{10}}\]

For maxima and minima,

\[\frac{dD}{dh} = 0\]

\[ \Rightarrow \frac{2h + 4}{\sqrt{10}} = 0\]

\[ \Rightarrow 2h = - 4\]

\[ \Rightarrow h = - 2\]

Now,

\[\frac{d^2 D}{d^2 h} = \frac{2}{\sqrt{10}} > 0\]

So, h = −2 is the point of minima.
When h = −2,

\[k = \left( - 2 \right)^2 + 7 \times \left( - 2 \right) + 2 = 4 - 14 + 2 = - 8\]   [Using (1)]

Thus, the coordinates of a point of the given parabola that is closest to the given straight line is (−2, −8).
shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Foreign Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.


Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×