English

The Area Bounded by the Curve Y = Loge X and X-axis and the Straight Line X = E is - Mathematics

Advertisements
Advertisements

Question

The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .

Options

  • e sq. units

  • 1 sq. units

  • 1−\[\frac{1}{e}\] sq. units

  • 1+\[\frac{1}{e}\] sq. units

MCQ

Solution

1 sq. units

 


The point of intersection of the curve and the straight line is A(e, 1).
Therefore, the area of the required region ABC,
\[A = \int_0^1 \left( x_1 - x_2 \right) d y ..........\left(\text{ where, }x_1 = e\text{ and }x_2 = e^y \right)\]
\[ = \int_0^1 \left( e - e^y \right) d y\]
\[ = \left[ ey - e^y \right]_0^1 \]
\[ = \left\{ e\left( 1 \right) - e^\left( 1 \right) \right\} - \left\{ e\left( 0 \right) - e^\left( 0 \right) \right\}\]
\[ = e - e + 1\]
\[ = 1\text{ square unit }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - MCQ [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
MCQ | Q 3 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\]  are in the ratio 2 : 3.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×