Advertisements
Advertisements
Question
In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?
Solution
We have,
\[y = 4x - x^2\] and \[y = x^2 - x\]
The points of intersection of two curves is obtained by solving the simultaneous equations
\[\therefore x^2 - x = 4x - x^2 \]
\[ \Rightarrow 2 x^2 - 5x = 0 \]
\[ \Rightarrow x = 0\text{ or }x = \frac{5}{2}\]
\[ \Rightarrow y = 0\text{ or }y = \frac{15}{4}\]
\[ \Rightarrow O\left( 0, 0 \right)\text{ and D }\left( \frac{5}{2} , \frac{15}{4} \right)\text{ are points of intersection of two parabolas . }\]
\[\text{ In the shaded area CBDC , consider P }(x, y_2 )\text{ on }y = 4x - x^2\text{ and Q }(x, y_1 )\text{ on }y = x^2 - x\]
\[\text{ We need to find ratio of area }\left( OBDCO \right)\text{ and area }\left( OCV'O \right)\]
\[\text{ Area }\left( OBDCO \right) \hspace{0.167em} =\text{ area }\left( OBCO \right) + \text{ area }\left( CBDC \right)\]
\[ = \int_0^1 \left| y \right| dx + \int_1^\frac{5}{2} \left| y_2 - y_1 \right| dx\]
\[ = \int_0^1 y dx + \int_1^\frac{5}{2} \left( y_2 - y_1 \right) dx .............\left\{ \because y > 0 \Rightarrow \left| y \right| = y\text{ and }\left| y_2 - y_1 \right| \Rightarrow y_2 - y_1 \text{ as }y_2 > y_1 \right\} \]
\[ = \int_0^1 \left( 4x - x^2 \right)dx + \int_1^\frac{5}{2} \left\{ \left( 4x - x^2 \right) - \left( x^2 - x \right) \right\}dx\]
\[ = \left[ \frac{4 x^2}{2} - \frac{x^3}{3} \right]_0^1 + \int_1^\frac{5}{2} \left( 5x - 2 x^2 \right)dx\]
\[ = \left[ 2 x^2 - \frac{x^3}{3} \right]_0^1 + \left[ \frac{5 x^2}{2} - \frac{2 x^3}{3} \right]_1^\frac{5}{2} \]
\[ = \left( 2 - \frac{1}{3} \right) + \left[ \frac{5}{2} \left( \frac{5}{2} \right)^2 - \frac{2}{3} \left( \frac{5}{2} \right)^3 - \frac{5}{2} + \frac{2}{3} \right]\]
\[ = \left( \frac{5}{3} \right) + \left[ \left( \frac{5}{2} \right)^3 \left( 1 - \frac{2}{3} \right) - \frac{11}{6} \right]\]
\[ = \frac{5}{3} + \left( \frac{5}{2} \right)^3 \frac{1}{3} - \frac{11}{6}\]
\[ = \frac{10 - 11}{6} + \frac{125}{24} \]
\[ = \frac{121}{24}\text{ sq units }........\left( 1 \right)\]
\[\text{ Area }\left( OCV'O \right) = \int_0^1 \left| y \right| dx = \int_0^1 - y dx ............\left\{ \because y < 0 \Rightarrow \left| y \right| = - y \right\}\]
\[ = \int_0^1 - \left( x^2 - x \right)dx\]
\[ = \int_0^1 \left( x - x^2 \right) dx\]
\[ = \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 \]
\[ = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}\text{ sq units } ........ \left( 2 \right)\]
\[\text{ From }\left( 1 \right)\text{ and }\left( 2 \right) \]
\[\text{ Ratio }= \frac{\text{ Area }\left( OBDCO \right)}{\text{ Area }\left( OCV'O \right)} = \frac{\frac{121}{24}}{\frac{1}{6}} = \frac{121}{4} = 121: 4 \]
APPEARS IN
RELATED QUESTIONS
Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
The area bounded by the curve y = x | x|, x-axis and the ordinates x = –1 and x = 1 is given by ______.
[Hint: y = x2 if x > 0 and y = –x2 if x < 0]
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.
Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .
The area of the region bounded by the parabola y = x2 + 1 and the straight line x + y = 3 is given by
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.
Find the area of the curve y = sin x between 0 and π.
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
The curve x = t2 + t + 1,y = t2 – t + 1 represents
The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.
Evaluate:
`int_0^1x^2dx`